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A wave motion generated on the surface of a heavy incompressible fluid by 
oscillations of a section of the bottom of a tank with a dock is studied. The 

problem of waves generated by an oscillating section of the bottom of a tank 

was dealt with in p, 21. In the present paper the Wiener-Hopf method [3] is 
employed to solve the analogous problem in which the boundary conditions 
have been altered, namely, a part of the free surface is covered with an immo- 
vable rigid plate. An expression for the velocity potential describing the mo- 

tion of the fluid in the problem under consideration is derived. The results of 
r2, 4, 51 are found to be particular cases of the solution obtained here. The 

numerical example given shows that the rise of the free surface is smaller on 
the dock side than that at the corresponding point at the side opposite to the 

oscillating section of the bottom. 

1. An immovable rigid plate is situated at the surface of a fluid of finite depth h , 
occupying the region y = h, x ,( - 1 and - 00 < z < 00. The coordinate origin 
is placed at the bottom of the tank and the y-axis is directed vertically upwards. The 

section y = 0, 0 < x < a: -- 00 < z < co of the bottom undergoes vertical dis- 

placement according to the law 

y = Re [/I (z) exp i (kz - cot)] 

where I’ (2) is a numerically small, smooth function. The velocity potential p (I, y. 
z, t) which in this case describes the motion of the fluid, must satisfy the following 
boundary value problem 

AF(z, y,z,t)=(i (nsy~h,--<<~<,-,,<z<n;l) 

d2F / at2 -t gaF / ay = 0 when y = h, X>---I, --<Z<W 

tlFii)y=(~ when !,=h, s<-l, -y><z<m (1.1) 

aFlay = 
i 
- co Re [icl (2) exp i (k - o’)] 

,O (--<x<<,fl<~<=) 
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The fluid motion must be bounded near the point (- 1, h) as well as at a distance 
from the dock, and it must gradually decay under the dock. ‘I’he first condition is ex- 
pressed by the requirement that dF / at is bounded at the dock edge n]. 

The function F (z, y. z, t) is sought in the form 

F(z, y, 2, t)= Re [cp (2, y) exp i (kz - 0?)1 (1.2) 
For cp (t, y)we have 

Acp - k2q = 0 (O<YGh -m<z<=J) 
drpiay-_T=O when y=h, x>-1 (p=O’l/g) 

acpjay=o when y=h, x<-1 

iov (5) (0 < 5 < a) 1 aq/ay={, (-a <x<o, a<x<coI 
when y = 0 (1.3) 

I 'P (xv Y) I < fv = const when r = l(z + 1)’ + (y - h)‘] -+ 0 

lim cp = D, ch C,,yeia”, D, = const, 6 = con.4 
x-+00 

lim ‘p = D-exp kx, k > 0, D_ = const 
2--r-00 

where + iC, are roots of the equation fl cos Ch + C sin Ch = 0. Applying to(1.3) - 
the Fourier transforms and making use of the notation 

@(a, y) = 'f cp(x, y)eiXXdx, u=a+ir 
-03 

@+(a, y)=Jlcp(r, yjei~@+*)&, V(ct)=~z~(x)e~~~dx 

0 

-1 

CD-(a, y) = f cp (x, y) eia(x+r) dx, r2 = u2 + k2 

we obtain the following functional equation: 

K (a) = rsh’rh 
y sh yh - p ch Th (O<r<k--<<ax) 

Here @ + (a, h) is a function regular in the semiplane t > 0 and @_ (a, h) 

regular in the semiplane t < k. The kernel K (a) of (1.4) is a function, regular 
strip under consideration. 

ht.(a) rchr(h--yy)-Pphr(h--Yy) _ 
@ (a, Y) = -y-- 

@-ia’O_ (a, h) ch my 
7 sh yh - p cl1 yh rshyh-pcchyh 

(1.4) 

is 
in the 

(1.5) 

2. The functional equation (I. 4) is solved using the Wiener-Hopf method [3]. let 

us factorize the function [4] 

[ 1 + k2h2 / (nW)]“’ - iah / (TWX) 

[I + k”h2 / pY,.3]'/2 - iah / p, 
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where -& pb / h and & ip, / h are roots pf the equation p sh ph - fl ch ph = 0, 
and &, = nn -/- fib ! (nn) when n > 1. Multiplying (1.4) by [K, (a)]-’ we obtain 

@+@, 4 
K, (3 + 

@-(a, h) = io v (2) eial 
K- (a) fr sh yh - 6 ch T~J K, (a) = iur (a) 

Applying now the partition method 131, the Liouville theorem [4] and taking into account 
the condition (1.3) at the edge, we obtain the following relation for the above equation: 

ic+m 
CD, (a. h) 0 CD_ (% 4 

id+% 

r (5) dE 
4 (4 

-- 
K- (4 E - = P = const 

E--a 

from which follows 
(O<c<t<d<k) 

@._(a, h)= -K_(a)[P t-5 1 e] 
id---m 

(2-l) 

The integral in (2.1) should be computed using the residues at the poles of the upper 

semiplane, since the integrand expression contains, as a multiplier, the function [K+( $)I-’ 
which is analytic in the upper semiplane and has an infinite number of poles in the lower 

semiplane. The integrand expression in (2.1) has, in addition to the roots of [V (g)]-‘, 
the following singularities (poles) in the upper semiplane : 

E = iv,, v,= [k2+pn2/h2]‘!z (n=1,2,...) 

Using the theorem of residues, we can write (2.1) in the form 

a- (a, 11) = - K- (a) IX res (E*) + P + (2.2) 

y 
71 - 4 K+ (iv,,) 1 

Here E, are the roots of the equation [V (E)l-l = 0. Now, applying the inverse Fourier 
transforms to (1.5) and taking (2.2) into account, we obtain the solution of (1.3). 

3. Let the amplitude function be given by li (x) = E sin n/a z, where e denotes 
the maximum deflection of the points lying on the median of the oscillating section of 
the bottom and is assumed small compared with h. Then 

(3-l) 

The denominator in the right-hand part of (3.1) does not vanish in the upper semiplane 
r > 0, therefore in the present case (2.2) assumes the form 

CD_ (a, h) = - K_(a) x 
02 

x P+eo$x 
[ 

(I + e-“na) pnZe-“I1’ 

n=l vnh [PLhZ - ph + p,2] cos p, (vn” + nz / aa) (iv, -a) K+ (iv,,) 3 
(3.2) 
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Applying the inverse Fourier transform to (1.5) and taking into account (3.1) and (3.2) 

we can write the solution of (1.3) for our particular case, as 

‘p (s, Y) = y (x, Y) + iew + ifs (y) [sin 6 (X - a) + sin 821 + 

+ 5 f, (y) (1 + eYnn) e-‘nx} when a<x<ca 
TX=1 

(3.3) 

,P(x, YJ = iero+{ a [bchb(h -u) - Bshb(h-- ?/J 

nb(bshbh-fichbh) sin + 5 $- f. (y) sin 6x + 

+ 5 f71 (Y) PVnX - evn’““‘]) f Y (x, Y) when 0 < z q a (3.4) 
11=1 

y(2-,y)=Y(x,y)+iei, GR(x,y) when -l<x<O (3.5) 

4p (z, y) = iew ;-{ p : 
An (1 f CG”) 

,%el (v,’ + rc2 / aZ) sin p 
n CDS F ye’n\‘ + R (x, y)} + 

rL=l 

A,, = p0 A, = P, 
6 (8~ - fPk3 -j- po2) ch po ’ vn (Wr - W i P,~? cos P,, 

b = (ks + $)‘/,, 
I 

Y (2, y).= - ip (A, F [$_ (6) K_ (6) e-i6(xtl) - 

- $_ (- 6) K_ (- 6) eis@+l)l ch $ y + 

+ i i A,%$_(- ivn)K_(- iV,)e-s,‘“‘)~~s.f~y} 
n=1 

R (x, y) = - 5 fll (y) (1 + e-“n”) e-“n’ 

It should be noted that the formulas (3.3) - (3.6) yield the results of c2] for 1 + 00 , 
the results of [4] for e--f 0, and the results of [5] for I -+ 0. 

4. If we limit ourselves to the case I / h > 1, i.e. if we assume that the distance 

between the plate edge and the oscillating section of the bottom exceeds the depth of 

the fluid, then the terms containing the factor esp (-_y,Z) will vanish from the expres- 
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Sims (3.3)-(3.6) and the form of the surface will be given by the formulas 

3) 

5 (2, 2, t) = ei$(B0[sin6s~~ sin6(s-a)]+ 2 Bn(l teYn”)e-Y~~r)~~s(k:--ot) 
il=l 

when n<x<w (3.1) 

b (2, 2, t) = El@ 
asinnxja 

n(bshbh-Bchbh) 
+ &I sin 6s + 5 

*=1 
xcos (kz - ot) when @<x<a (4.2) 

00 

5 (5, 2, 1) = - E$ 2 B,, (1 + e-Ynn) evnn ~0s (kz _ at) (4.3) 
n=1 

when -l<x<O 

2Aopo/h 
Bo= 

‘Q, I h 
62 _ fl2 / a2 1 

B,, = vn2 + n2 / a2 

Formulas (4.1)-(4.3) do not include the terms which are obtained from (3.3)- (3.6) 
in the absence of motion of the bottom (E = O), i.e. the terms which define the natural 
oscillations of the free surface of the fluid which are the same for all three regions 

(--1, O), IO, a] and (a, 0~) . 
For the values of parameters E = 0.1 m, h = i m, a = 2m, o = 4.34 set and k = 

1 m, we obtain the following values for the rise of the free surface 5 (m) along I (m): 
x = -2, 1 and 4 we have 5 = 0.001, 0.194 and 0.174. 

From these results we can conclude that the presence of a dock at the surface of a 

fluid exerts a stabilizing influence on small perturbations appearing as the result of a 
section of the bottom undergoing a deformation. 
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